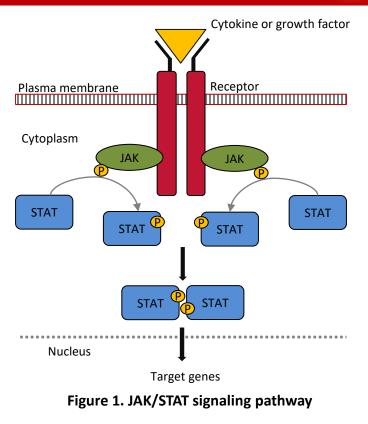


High-selective JAK1 inhibitor, golidocitinib, demonstrates targeting JAK/STAT pathway to treat r/r PTCL

Won-Seog Kim¹, Dok-Hyun Yoon², Yuqin Song³, Haiyan Yang⁴, Junning Cao⁵, Dongmei Ji⁵, Youngil Koh⁶, Hongmei Jing⁷, Hyeon-Seok Eom⁸, Jae-Yong Kwak⁹, Won-Sik Lee¹⁰, Jong-Seok Lee¹¹, Ho-Jin Shin¹², Jie Jin¹³, Mei Wang¹⁴, Jingrun Li¹⁴, Xubin Huang¹⁴, Xueyuan Deng¹⁴, Zhenfan Yang¹⁴, Jun Zhu³.

¹Samsung Medical Center, ²Asan Medical Center, ³Peking University Cancer Hospital, ⁴Zhejiang Cancer Hospital, ⁵Fudan University Shanghai Cancer Center, ⁶Seoul National University Hospital, ⁷Peking University Third Hospital, ⁸National Cancer Center, ⁹Chonbuk National University Hospital, ¹⁰Inje University Busan Paik Hospital, ¹¹Seoul National University Bundang Hospital, ¹²Pusan National University Hospital, ¹³The First Affiliated Hospital of Zhejiang University, ¹⁴Dizal Pharmaceuticals.

Bologna, Royal Hotel Carlton, October 25-26, 2022



- Research fund: Sanofi, Merk, Beigene, Roche, Boryong, Celltrion, Kyowa-Kirin
- Honorarium: Takeda, Immunoncia
- Consultation: Celltrion

- Genomic profiling of T-cell neoplasms reveals frequent genomic aberrations in the JAK/STAT pathway with clonal evasion from targeted therapies.¹
- JAK enzymes maybe rational therapeutic targets for T-cell leukemias and lymphomas.

Targeting JAK-STAT for T-cell Malignancies

- Golidocitinib:
 - An orally available, high-selective JAK1 inhibitor.
 - Favorable PK properties: once daily dosing regimen can maintain efficacious blood concentration during dosing interval.
 - Preclinical study showed the profound dose-dependent anti-tumor activities of golidocitinib in T-lymphoma cell lines and xenograft models with good correlations between exposure and pSTAT3 modulations.

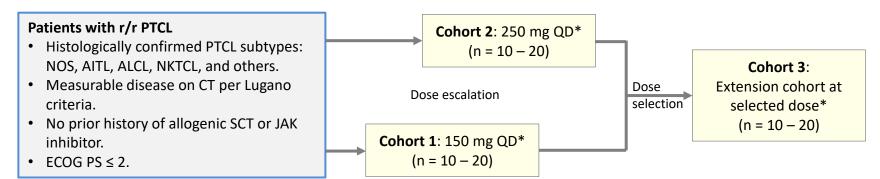


Figure 2. Golidocitinib (AZD4205) shows dose-dependent antitumor efficacy in Hut-102 xenograft model

Overall Design of JACKPOT8 Study

- JACKPOT
- JACKPOT8 study (NCT04105010): a single-arm, open-label, phase I/II study to assess the safety, tolerability, PK, and anti-tumor efficacy of golidocitinib treating patients with r/r PTCL.

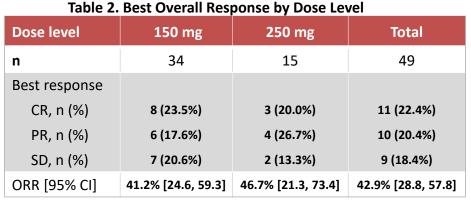
Figure 3. JACKPOT8 Study Design (Phase I part)

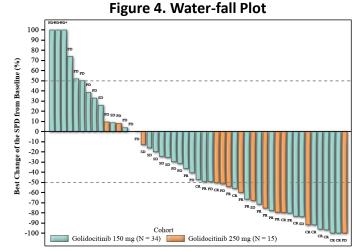
* Golidocitinib continued being administrated on a 21-day dosing cycle till disease progression or intolerance.

- Primary endpoints
 - The adverse events of golidocitinib treating r/r PTCL.
- Secondary endpoints
 - Investigator-assessed ORR, DoR, and PFS.
 - The PK profile of golidocitinib in r/r PTCL.

• As of 31 May 2021, a total of 51 subjects with r/r PTCL were enrolled and received at least one dose of golidocitinib.

Table 1. Baseline Characteristics of All Subjects


Dose level Category	150 mg	250 mg	Total	Dose level Category	150 mg	250 mg	Total
n	35	16	51	n	35	16	51
Age, years				PTCL subtype based on local diagnosis, n (%)			
Median (range)	61.0 (33 <i>,</i> 78)	61.5 (29, 79)	61.0 (29, 79)	PTCL-NOS	15 (42.9%)	6 (37.5%)	21 (41.2%)
Sex				A 171	. ,	. ,	
Female/Male	14/21	3/13	17/34	AITL	14 (40.0%)	6 (37.5%)	20 (39.2%)
ECOG PS, n (%)				NKTCL	2 (5.7%)	2 (12.5%)	4 (7.8%)
0/1	34 (97.1%)	16 (100.0%)	50 (98.0%)	ALCL ALK-negative	3 (8.6%)	1 (6.3%)	4 (7.8%)
No. of prior therapies, n (%)				MEITL	1 (2.9%)	1 (6.3%)	2 (3.9%)
Median (range)	2.0 (1, 8)	2.5 (1, 8)	2.0 (1, 8)		. ,	. ,	
≥ 3 lines	13 (37.1%)	8 (50.0%)	21 (41.2%)	Baseline BM involved, n (%)	10 (28.6%)	5 (31.3%)	15 (29.4%)
Chemotherapy	35 (100.0%)	16 (100.0%)	51 (100.0%)				
HDAC inhibitor	8 (22.9%)	6 (37.5%)	14 (27.5%)	History of SCT, n (%)	7 (20.0%)	2 (10 00/)	10/10 69/)
CD30 targeting therapy	2 (5.7%)	0 (0%)	2 (3.9%)		7 (20.0%)	3 (18.8%)	10 (19.6%)


Abbreviation: ECOG PS, Eastern Cooperative Oncology Group Performance Status; HDAC, histone deacetylase; PTCL-NOS, peripheral T-cell lymphoma not otherwise specified; AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large-cell lymphoma; ALK, anaplastic lymphoma kinase; NKTCL, natural-killer/T cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T cell lymphoma; BM, bone marrow; SCT, stem cell transplantation.

Anti-tumor Efficacy of Golidocitinib Treating r/r PTCL

At the DCO, 49 subjects completed at least one tumor assessment after dose with golidocitinib (n = 34 at 150 mg, n = 15 at 250 mg), and the other 2 subjects discontinued without any tumor assessments.

• n includes all subjects who completed at least one post-treatment anti-tumor efficacy assessment at the data cut-off.

• The tumor response was assessed by local investigators per Lugano criteria.

The median duration of response (DoR) was not reached at the data cut-off (31 May 2021), and the longest DoR was > 14 months.

Table 3. Best Overall Response by Histology (All Dose Levels)

Histological subtypes	PTCL-NOS	AITL	ALCL ALK-	Extra-nodal Nasal NK/TCL	MEITL	Total
n	19	20	4	4	2	49
Best overall response, n (%)						
Complete response, n (%)	2 (10.5%)	7 (35.0%)	1 (25.0%)	1 (25.0%)	0	11 (22.4%)
Partial response, n (%)	3 (15.8%)	6 (30.0%)	1 (25.0%)	0	0	10 (20.4%)
ORR	26.3%	65.0%	50.0%	25.0%	0	42.9%

• n includes all subjects who completed at least one post-treatment anti-tumor efficacy assessment at the data cut-off.

• The diagnosis of histological subtypes were based on local investigational sites' assessment.

• The tumor response assessment was performed by local investigators per Lugano criteria.

Safety and Tolerability of Golidocitinib Treating r/r PTCL

 At the DCO, a total of 51 subjects with r/r PTCL were enrolled and dosed with golidocitinib (n = 35 at 150 mg, n = 16 at 250 mg).

Table 3. Overall AEs by Dose Level

Category, n (%)	Golidocitinik	Total		
	150 mg (n = 35)	250 mg (n = 16)	n = 51	
Any AE	32 (91.4%)	16 (100.0%)	48 (94.1%)	
Any G3+ AE	21 (60.0%)	9 (56.3%)	30 (58.8%)	
Any SAE	12 (34.3%)	8 (50.0%)	20 (39.2%)	
Any AE leading to dose reduction	5 (14.3%)	6 (37.5%)	11 (21.6%)	
Any AE leading to dose discontinuation	5 (14.3%)	1 (6.3%)	6 (11.8%)	

Abbreviation: AE, adverse event; SAE, serious adverse event.

Footnote: This table summarizes the treatment emergent adverse events (irrespective of relatedness) per investigators' assessment by data cut-off date (31 May 2021). n includes all subjects who had received at least one dose of golidocitinib at the cut-off.

- Preliminary data demonstrated a comparable safety and tolerability profile of golidocitinib in r/r PTCL with the approved therapies.
- The most common (incidence > 10%) G3+ AEs included thrombocytopenia, neutropenia and pneumonia.
- The majority AEs were reversible, or clinically manageable with dose modifications.

Table 5. CTCAE G3+ AEs by Dose Level

CTCAE G3+ AEs ≥ 3 subjects	Golidocitinik	Total		
MedDRA Preferred Term, n (%)	150 mg (n = 35)	250 mg (n = 16)	n = 51	
Neutropenia	12 (34.3)	3 (18.8)	15 (29.4)	
Thrombocytopenia	4 (11.4)	4 (25.0)	8 (15.7)	
Pneumonia	4 (11.4)	2 (12.5)	6 (11.8)	
Anemia	4 (11.4)	0	4 (7.8)	
Hepatic enzyme increased	4 (11.4)	0	4 (7.8)	
WBC decreased	2 (5.7)	1 (6.3)	3 (5.9)	

Footnote: This table summarizes the CTCAE grade 3 or higher AEs (irrespective of relatedness) per investigators' assessment, which were observed in \geq 3 subjects by data cut-off date (31 May 2021). n includes all subjects who had received at least one dose of golidocitinib at the data cut-off.

- The preliminary data demonstrated a comparable safety and tolerability profile of golidocitinib in r/r PTCL, with the approved therapies.
- The most common (incidence > 10%) G3+ AEs included thrombocytopenia, neutropenia and pneumonia.
- The majority AEs were reversible, or clinically manageable with dose modifications.

Exploratory Biomarker Studies

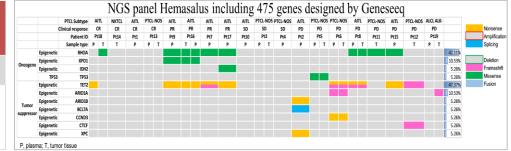

- Tumor samples from 20 subjects were determined suitable for pSTAT3 IHC analysis. A positive trend between clinical activity and high level of pSTAT3 was observed (Table 4).
- Targeted genomic sequencing was carried out with samples from 19 subjects. No genetic mutations associated with JAK/STAT pathway (including JAK1/2/3, STAT3/5A/5B/6) were identified in the tested samples.

Table 4. pSTAT3 expression level and efficacy

	pSTAT3 expr	Total		
	Low (n = 13)	High (n = 7) ²	n = 20	
ORR (r/n)	30.8% (4/13)	57.1% (4/7)	40.0% (8/20)	

Note: 1. pSTAT3 expression assay was conducted with pSTAT3 IHC based on archived tumor tissues, which were collected from 20 subjects at baseline; 2. pSTAT3 high was defined as pSTAT3 stained in \ge 60% of tumor cells.

Figure 5. Genomic profiling

Note: Genomic profile was analyzed with NGS designed by Geneseeq based on archived tumor tissue/plasma collected from 19 subjects at baseline.

- Efficacy
 - Promising anti-tumor activity of golidocitinib was observed in patients with r/r PTCL.
- Safety
 - Golidocitinib was well tolerated, with comparable safety profiles with currently approved therapies.
 - The most common (incidence > 10%) grade 3 or higher AEs included thrombocytopenia, neutropenia, and pneumonia.
 - The majority of AEs were reversible, or clinically manageable with dose modifications.
- Exploratory biomarker
 - No apparent correlation between genetic mutations in JAK/STAT pathway and clinical response was observed, while baseline high pSTAT level seems to correlate (Larger sample size is needed to confirm the findings).

Acknowledgements

- All patients in this study and their families.
- Participating Centers and Investigators.
- Dizal Pharmaceuticals.